Call For Admission - 9644139972

Certify Course

IS0 9001:2008 Certifed Diploma Course .

India Best EMMC Training Institute

10 Day (8 Hour/PerDay ) Full IC Training Microscope Lap

CLick to join FACEBOOK

Daily to daily New Update in Mobile Repairing - Follow My Official Page



How to Reset Mobile Phone Complete Guide

Hard Reset All Mobile Phone Complete Guide

Advance Mobile Repairing Free guide Solution & Software

Thursday, 31 August 2017

How To Flash Redmi 1S Mobile (Model Number -2013029)MIUI ( Red MI Xaomi Mobile Flashing 3 Method )

MIUI (   Red MI Xaomi Mobile Flashing 3 Method )

How To Flash Redmi 1S Mobile (Model Number -2013029)

For More Tutorial  - Redmi 2 (Model-HM 2LTE-IN) or 2014818 flash a dead phone

Method 1: System Update

Method 2: Recovery Update

Method 3: Fastboot Update

Method 3: Fastboot Update

What is Fastboot ROM:

Fastboot ROM is entirely different to that of Recovery ROM where you need to connect the device with PC and a Mi flashing tool is used. Here the user has the option to select whether to wipe data or not. The Fastboot ROM is mainly flashed whenever you facing any bugs/issues, bricked phones, etc.

If You want to Flash Any Redmi Mobile Phone in Fastboot mode, so You Require 


2.Original USB Cable


So we are here showing Flashing Redmi 1s  (Model Number -2013029) 

Step First - 

  • Download MI Rom - Download From Here 
Download Firmware - For Redmi 1s

  • When Rom Download, it will showing like this 
  • File extension is (.tgz) 

  • Now Extract the Rom than Paste in C:Disk 

  • than Paste in C:Disk 

Step -2 

Download MI USB Driver - Download From Here Link- 2 

Step -3 

Download Mi-Flash Tool - download Here 

Step - 4

Open MI Flash Tool 


1. Download Fastboot ROM from the above link to your PC and extract it to desktop.
2. Now you need to download and install Mi Flash tool on your PC.
3. Next Run Mi Flash application and tap on ‘Browse’.

4. Next you need to select the ROM folder from desktop.

5. Turn off the device and enter into Fastboot mode. You need to press Volume Down + Powerbutton at the same time to boot your device into fastboot mode.

6. Connect your device with PC.
7. Next go to flashing tool and tap on ‘Refresh’ button to see the connected devices.

8. Once the device is detected, you have three options to choose as per your requirement as show in the above image.
  • Flash_all:- Clears all the data of the built-in storage, clear all user data, please be careful!(Clean Install)
  • Flash_all_except_storaget:- Will erase all user data does not clear the built-in storage data.
  • Flash_all_except_data_storage:- Does not clear the built-in storage data does not clear user data

10. Once done with the flashing process, the device will reboot automatically.

Note: As it is the first reboot after flashing ROM, it might take up to 5-10 minutes. So, hold your seats and wait.
So, it was the process to flash Fastboot ROM on any Mi Android Smartphone using Mi Flash Tool. 

If you face any problem while flashing Fastboot ROM, do leave a comment below as we are always there to help you out.

How to Install Properly Step by Step Mi USB Driver Manaully

How to Install Properly Step by Step Mi USB Driver Manaully 

Download MI USB Driver - Download From Here 

  • Extract MI USB Driver Folder 

Now You have to Install Manaully this file from Device manager ( if you are using Window)

  • Open Device Manager 
  • Click Action
  • Click Add Lagacy Hardware 

  • Click Next

  • Select - Install the hardware i manually
  •  than click Next  

  • Click Next

  • Click Have a Disk 

  • Select Path - MI USB File from MI USB Driver Folder 

Select this File from MI USB Driver Folder 

  • Click Next

  • Complete Install Mi USB Driver on Your Computer Manually 

MI FLASH TOOL - Remove Mi Cloud & Upgrade Rom

MI FLASH TOOL - Remove Mi Cloud & Upgrade Rom

We recommend using Samsung’s own utilities, Samsung Kies and OTA (Over-the-air), to upgrade devices. Use Pangu only if you are 100% sure about the risks involved in flashing your device. Pangu is not responsible for any damage caused by using the files on this website. We have every Samsung firmware ever released. That includes network specific firmware. So it doesn’t matter if you need network customised or Samsung (sim-free) generic firmware. Also, we're always the first with the latest official Samsung firmware. Please log in to your Pangu account before downloading

samsung phone update software download select you device model number properly. samsung phone software is available in we provide latest samsung software update. we fatch firmware from software update manager is also available for software updater. firmware link are available at the bellow

We recommend using Samsung’s own utilities, Samsung Kies and OTA (Over-the-air), to upgrade devices. Use Pangu only if you are 100% sure about the risks involved in flashing your device. Pangu is not responsible for any damage caused by using the files on this website. We have every Samsung firmware ever released. That includes network specific firmware. So it doesn’t matter if you need network customised or Samsung (sim-free) generic firmware. Also, we're always the first with the latest official Samsung firmware. Please log in to your Pangu account before downloading



samsung phone update software download select you device model number properly. samsung phone software is available in we provide latest samsung software update. we fatch firmware from software update manager is also available for software updater. firmware link are available at the bellow

Wednesday, 30 August 2017

The secret marketing trick behind powerbank capacity.

Powerbank Capacities? Understanding the Reality - The secret marketing trick behind powerbank capacity.

You have an original real capacity 10,000 mAh power bank, and that should charge your 1500mah phone about 6 times, right? Well, here is where the confusion begins.

What the advertised capacity actually tells you.

The rated capacity is what is actually inside the powerbank, the physical battery.

Inside a 10,000 mAh power bank.

This powerbank has 4 3.7V 2,500mAh batteries, together that equals 10,000mAh and this is correct.

But USB is 5V!

Inside powerbanks are 3.7V batteries, but the USB standard is 5V.  Between the battery and the USB socket is a conversion circuit and this changes the 3.7 V into USB friendly 5V. When converting into a higher voltage, you must also convert the mAh into the new voltage.

How to calculate theoretical USB output capacity

A simple equation can be used to convert the 3.7V into 5V.
ACTUAL 5V mAh = 3.7 X Advertised Capacity / 5
For a 10,000mAh powerbank – 3.7 X 10,000 / 5 = 7,400 mAh
So a 3.7V 10,000 mAh powerbank really only supplies 7,400 mAh at the 5V USB connection. So straight out of the box is a 23% reduction in the stated mAh.  This is not the actual experienced level as there is also conversion loss.

What is conversion loss?

As you use your powerbank the circuit inside that converts 3.7V to 5V USB uses some energy and also creates heat. During this conversion, you lose some extra mAh.  There is a wide range in conversion efficiency and most brands don’t state the losses, Xiaomi has prized themselves on their conversion efficiency chips which are up to 98% efficient, meaning you only loose 2% off your battery power in the conversion. Some others can consume as much as 10% during conversion.

Why don’t they just state the actual output?

They don’t need to as technically that is what’s inside the box and most people have no idea. By not giving the actual 5V output brands can reap these benefits;
  • Manufactures can have a higher number of mAh for their powerbank and sound more powerful.
  • It avoids the talk or testing of conversion loss and brands with low efficiency conversion chips can still market them in the same league as other efficient brands.
Some manufacturers will state in the manual or in small print on the device but most will not state anything other than the 3.7V mAh. As a general rule I would recommend taking 25% – 30% off the advertised capacity straight away and then you have a more realistic indication of performance.

This power bank actually states both capacity’s, you wouldn’t notice it tho unless you are one of the people who actually read product labels. This one has 16,000 mAh but only has 10,200mAh at 5.1V.

It is a very gray area and not common knowledge but I hope this has shed a bit of light on how powerbanks are advertised and busted the classic assumption that dividing the rated capacity by your phone battery capacity is an accurate measurement of actual number of recharges, in reality, it is far from it.
You are now a powerbank expert and next time you are on the prowl for a new one have a look through our range.

Tuesday, 29 August 2017

Alternating Current (AC) vs. Direct Current (DC)

Alternating Current (AC) vs. Direct Current (DC)

Where did the Australian rock band AC/DC get their name from? Why, Alternating Current and Direct Current, of course! Both AC and DC describe types of current flow in a circuit. In direct current (DC), the electric charge (current) only flows in one direction. Electric charge in alternating current (AC), on the other hand, changes direction periodically. The voltage in AC circuits also periodically reverses because the current changes direction.
Most of the digital electronics that you build will use DC. However, it is important to understand some AC concepts. Most homes are wired for AC, so if you plan to connect your Tardis music box project to an outlet, you will need to convert AC to DC. AC also has some useful properties, such as being able to convert voltage levels with a single component (a transformer), which is why AC was chosen as the primary means to transmit electricity over long distances.

What You Will Learn

  • The history behind AC and DC
  • Different ways to generate AC and DC
  • Some examples of AC and DC applications

Recommended Reading

Alternating Current (AC)

Alternating current describes the flow of charge that changes direction periodically. As a result, the voltage level also reverses along with the current. AC is used to deliver power to houses, office buildings, etc.

Generating AC

AC can be produced using a device called an alternator. This device is a special type of electrical generator designed to produce alternating current.
A loop of wire is spun inside of a magnetic field, which induces a current along the wire. The rotation of the wire can come from any number of means: a wind turbine, a steam turbine, flowing water, and so on. Because the wire spins and enters a different magnetic polarity periodically, the voltage and current alternates on the wire. Here is a short animation showing this principle:

Generating AC can be compared to our previous water analogy:

o generate AC in a set of water pipes, we connect a mechanical crank to a piston that moves water in the pipes back and forth (our “alternating” current). Notice that the pinched section of pipe still provides resistance to the flow of water regardless of the direction of flow.


AC can come in a number of forms, as long as the voltage and current are alternating. If we hook up an oscilloscope to a circuit with AC and plot its voltage over time, we might see a number of different waveforms. The most common type of AC is the sine wave. The AC in most homes and offices have an oscillating voltage that produces a sine wave.

Other common forms of AC include the square wave and the triangle wave:

Square waves are often used in digital and switching electronics to test their operation.

Triangle waves are found in sound synthesis and are useful for testing linear electronics like amplifiers.

Describing a Sine Wave

We often want to describe an AC waveform in mathematical terms. For this example, we will use the common sine wave. There are three parts to a sine wave: amplitude, frequency, and phase.

Looking at just voltage, we can describe a sine wave as the mathematical function:
alt text
V(t) is our voltage as a function of time, which means that our voltage changes as time changes. The equation to the right of the equals sign describes how the voltage changes over time.
VP is the amplitude. This describes the maximum voltage that our sine wave can reach in either direction, meaning that our voltage can be +VP volts, -VP volts, or somewhere in between.
The sin() function indicates that our voltage will be in the form of a periodic sine wave, which is a smooth oscillation around 0V.
 is a constant that converts the freqency from cycles (in hertz) to angular frequnecy (radians per second).
f describes the frequency of the sine wave. This is given in the form of hertz or units per second. The frequency tells how many times a particular wave form (in this case, one cycle of our sine wave - a rise and a fall) occurs within one second.
t is our dependent variable: time (measured in seconds). As time varies, our waveform varies.
φ describes the phase of the sine wave. Phase is a measure of how shifted the waveform is with respect to time. It is often given as a number between 0 and 360 and measured in degrees. Because of the periodic nature of the sine wave, if the wave form is shifted by 360° it becomes the same waveform again, as if it was shifted by 0°. For simplicity, we sill assume that phase is 0° for the rest of this tutorial.
We can turn to our trusty outlet for a good example of how an AC waveform works. In the United States, the power provided to our homes is AC with about 170V zero-to-peak (amplitude) and 60Hz (frequency). We can plug these numbers into our formula to get the equation (remember that we are assuming our phase is 0):
AC equation
We can use our handy graphing calculator to graph this equation. If no graphing calculator is available we can use a free online graphing program like Desmos (Note that you might have to use ‘y’ instead of ‘v’ in the equation to see the graph).

Notice that, as we predicted, the voltage rise up to 170V and down to -170V periodically. Additionally, 60 cycles of the sine wave occurs every second. If we were to measure the voltage in our outlets with an oscilloscope, this is what we would see (WARNING: do not attempt to measure the voltage in an outlet with an oscilloscope! This will likely damage the equipment).
NOTE: You might have heard that AC voltage in the US is 120V. This is also correct. How? When talking about AC (since the voltage changes constantly), it is often easier to use an average or mean. To accomplish that, we use a method called “Root mean squared.” (RMS). It is often helpful to use the RMS value for AC when you want to calculate electrical power. Even though, in our example, we had the voltage varying from -170V to 170V, the root mean square is 120V RMS.


Home and office outlets are almost always AC. This is because generating and transporting AC across long distances is relatively easy. At high voltages (over 110kV), less energy is lost in electrical power transmission. Higher voltages mean lower currents, and lower currents mean less heat generated in the power line due to resistance. AC can be converted to and from high voltages easily using transformers.
AC is also capable of powering electric motors. Motors and generators are the exact same device, but motors convert electrical energy into mechanical energy (if the shaft on a motor is spun, a voltage is generated at the terminals!). This is useful for many large appliances like dishwashers, refrigerators, and so on, which run on AC.

Direct Current (DC)

Direct current is a bit easier to understand than alternating current. Rather than oscillating back and forth, DC provides a constant voltage or current.

Generating DC

DC can be generated in a number of ways:
  • An AC generator equipped with a device called a “commutator” can produce direct current
  • Use of a device called a “rectifier” that converts AC to DC
  • Batteries provide DC, which is generated from a chemical reaction inside of the battery
Using our water analogy again, DC is similar to a tank of water with a hose at the end.

The tank can only push water one way: out the hose. Similar to our DC-producing battery, once the tank is empty, water no longer flows through the pipes.

Describing DC

DC is defined as the “unidirectional” flow of current; current only flows in one direction. Voltage and current can vary over time so long as the direction of flow does not change. To simplify things, we will assume that voltage is a constant. For example, we assume that a AA battery provides 1.5V, which can be described in mathematical terms as:
alt text
If we plot this over time, we see a constant voltage:

What does this mean? It means that we can count on most DC sources to provide a constant voltage over time. In reality, a battery will slowly lose its charge, meaning that the voltage will drop as the battery is used. For most purposes, we can assume that the voltage is constant.


Almost all electronics projects and parts for sale on SparkFun run on DC. Everything that runs off of a battery, plugs in to the wall with an AC adapter, or uses a USB cable for power relies on DC. Examples of DC electronics include:
  • Cell phones
  • The LilyPad-based D&D Dice Gauntlet
  • Flat-screen TVs (AC goes into the TV, which is converted to DC)
  • Flashlights
  • Hybrid and electric vehicles

Battle of the Currents

Almost every home and business is wired for AC. However, this was not an overnight decision. In the late 1880s, a variety of inventions across the United States and Europe led to a full-scale battle between alternating current and direct current distribution.
In 1886, Ganz Works, an electric company located in Budapest, electrified all of Rome with AC. Thomas Edison, on the other hand, had constructed 121 DC power stations in the United States by 1887. A turning point in the battle came when George Westinghouse, a famous industrialist from Pittsburgh, purchased Nikola Tesla’s patents for AC motors and transmission the next year.

AC vs. DC

Thomas Edison (Image courtesy of

In the late 1800s, DC could not be easily converted to high voltages. As a result, Edison proposed a system of small, local power plants that would power individual neighborhoods or city sections. Power was distributed using three wires from the power plant: +110 volts, 0 volts, and -110 volts. Lights and motors could be connected between either the +110V or 110V socket and 0V (neutral). 110V allowed for some voltage drop between the plant and the load (home, office, etc.).
Even though the voltage drop across the power lines was accounted for, power plants needed to be located within 1 mile of the end user. This limitation made power distribution in rural areas extremely difficult, if not impossible.

With Tesla’s patents, Westinghouse worked to perfect the AC distribution system. Transformers provided an inexpensive method to step up the voltage of AC to several thousand volts and back down to usable levels. At higher voltages, the same power could be transmitted at much lower current, which meant less power lost due to resistance in the wires. As a result, large power plants could be located many miles away and service a greater number of people and buildings.

Edison’s Smear Campaign

Over the next few years, Edison ran a campaign to highly discourage the use of AC in the United States, which included lobbying state legislatures and spreading disinformation about AC. Edison also directed several technicians to publicly electrocute animals with AC in an attempt to show that AC was more dangerous than DC. In attempt to display these dangers, Harold P. Brown and Arthur Kennelly, employees of Edison, designed the first electric chair for the state of New York using AC.

The Rise of AC

In 1891, the International Electro-Technical Exhibition was held in Frankfurt, Germany and displayed the first long distance transmission of three-phase AC, which powered lights and motors at the exhibition. Several representatives from what would become General Electric were present and were subsequently impressed by the display. The following year, General Electric formed and began to invest in AC technology.

Edward Dean Adams Power Plant at Niagara Falls, 1896 (Image courtesy of
Westinghouse won a contract in 1893 to build a hydroelectric dam to harness the power of Niagara falls and transmit AC to Buffalo, NY. The project was completed on November 16, 1896 and AC power began to power industries in Buffalo. This milestone marked the decline of DC in the United States. While Europe would adopt an AC standard of 220-240 volts at 50 Hz, the standard in North America would become 120 volts at 60 Hz.

High-Voltage Direct Current (HVDC)

Swiss engineer René Thury used a series of motor-generators to create a high-voltage DC system in the 1880s, which could be used to transmit DC power over long distances. However, due to the high cost and maintenance of the Thury systems, HVDC was never adopted for almost a century.
With the invention of semiconductor electronics in the 1970s, economically transforming between AC and DC became possible. Specialized equipment could be used to generate high voltage DC power (some reaching 800 kV). Parts of Europe have begun to employ HVDC lines to electrically connect various countries.
HVDC lines experience less loss than equivalent AC lines over extremely long distances. Additionally, HVDC allows different AC systems (e.g. 50 Hz and 60 Hz) to be connected. Despite its advantages, HVDC systems are more costly and less reliable than the common AC systems.
In the end, Edison, Tesla, and Westinghouse may have their wishes come true. AC and DC can coexist and each serve a purpose.

Going Further

You should now have a good understanding of the differences between AC and DC. AC is easier to transform between voltage levels, which makes high-voltage transmission more feasible. DC, on the other hand, is found in almost all electronics. You should know that the two do not mix very well, and you will need to transform AC to DC if you wish to plug in most electronics into a wall outlet. With this understanding, you should be ready to tackle some more complex circuitry and concepts, even if they contain AC.

What is Electricity?

What is Electricity?

Getting Started

Electricity is all around us–powering technology like our cell phones, computers, lights, soldering irons, and air conditioners. It’s tough to escape it in our modern world. Even when you try to escape electricity, it’s still at work throughout nature, from the lightning in a thunderstorm to the synapses inside our body. But what exactly is electricity? This is a very complicated question, and as you dig deeper and ask more questions, there really is not a definitive answer, only abstract representations of how electricity interacts with our surroundings.

Electricity is a natural phenomenon that occurs throughout nature and takes many different forms. In this tutorial we’ll focus on current electricity: the stuff that powers our electronic gadgets. Our goal is to understand how electricity flows from a power source through wires, lighting up LEDs, spinning motors, and powering our communication devices.
Electricity is briefly defined as the flow of electric charge, but there’s so much behind that simple statement. Where do the charges come from? How do we move them? Where do they move to? How does an electric charge cause mechanical motion or make things light up? So many questions! To begin to explain what electricity is we need to zoom way in, beyond the matter and molecules, to the atoms that make up everything we interact with in life.
This tutorial builds on some basic understanding of physics, force, energy, atoms, and fields in particular. We’ll gloss over the basics of each of those physics concepts, but it may help to consult other sources as well.

Going Atomic

To understand the fundamentals of electricity, we need to begin by focusing in on atoms, one of the basic building blocks of life and matter. Atoms exist in over a hundred different forms as chemical elements like hydrogen, carbon, oxygen, and copper. Atoms of many types can combine to make molecules, which build the matter we can physically see and touch.
Atoms are tiny, stretching at a max to about 300 picometers long (that’s 3x10-10 or 0.0000000003 meters). A copper penny (if it actually were made of 100% copper) would have 3.2x1022 atoms (32,000,000,000,000,000,000,000 atoms) of copper inside it.
Even the atom isn’t small enough to explain the workings of electricity. We need to dive down one more level and look in on the building blocks of atoms: protons, neutrons, and electrons.

Building Blocks of Atoms

An atom is built with a combination of three distinct particles: electrons, protons, and neutrons. Each atom has a center nucleus, where the protons and neutrons are densely packed together. Surrounding the nucleus are a group of orbiting electrons.

A very simple atom model. It’s not to scale but helpful for understanding how an atom is built. A core nucleus of protons and neutrons is surrounded by orbiting electrons.
Every atom must have at least one proton in it. The number of protons in an atom is important, because it defines what chemical element the atom represents. For example, an atom with just one proton is hydrogen, an atom with 29 protons is copper, and an atom with 94 protons is plutonium. This count of protons is called the atom’s atomic number.
The proton’s nucleus-partner, neutrons, serve an important purpose; they keep the protons in the nucleus and determine the isotope of an atom. They’re not critical to our understanding of electricity, so let’s not worry about them for this tutorial.
Electrons are critical to the workings of electricity (notice a common theme in their names?) In its most stable, balanced state, an atom will have the same number of electrons as protons. As in the Bohr atom model below, a nucleus with 29 protons (making it a copper atom) is surrounded by an equal number of electrons.

As our understanding of atoms has evolved, so too has our method for modeling them. The Bohr model is a very useful atom model as we explore electricity.
The atom’s electrons aren’t all forever bound to the atom. The electrons on the outer orbit of the atom are called valence electrons. With enough outside force, a valence electron can escape orbit of the atom and become free. Free electronsallow us to move charge, which is what electricity is all about. Speaking of charge…

Flowing Charges

As we mentioned at the beginning of this tutorial, electricity is defined as the flow of electric charge. Charge is a property of matter–just like mass, volume, or density. It is measurable. Just as you can quantify how much mass something has, you can measure how much charge it has. The key concept with charge is that it can come in two types: positive (+) or negative (-).
In order to move charge we need charge carriers, and that’s where our knowledge of atomic particles–specifically electrons and protons–comes in handy. Electrons always carry a negative charge, while protons are always positively charged. Neutrons (true to their name) are neutral, they have no charge. Both electrons and protons carry the same amount of charge, just a different type.

The charge of electrons and protons is important, because it provides us the means to exert a force on them. Electrostatic force!

Electrostatic Force

Electrostatic force (also called Coulomb’s law) is a force that operates between charges. It states that charges of the same type repel each other, while charges of opposite types are attracted together. Opposites attract, and likes repel.

The amount of force acting on two charges depends on how far they are from each other. The closer two charges get, the greater the force (either pushing together, or pulling away) becomes.
Thanks to electrostatic force, electrons will push away other electrons and be attracted to protons. This force is part of the “glue” that holds atoms together, but it’s also the tool we need to make electrons (and charges) flow!

Making Charges Flow

We now have all the tools to make charges flow. Electrons in atoms can act as our charge carrier, because every electron carries a negative charge. If we can free an electron from an atom and force it to move, we can create electricity.
Consider the atomic model of a copper atom, one of the preferred elemental sources for charge flow. In its balanced state, copper has 29 protons in its nucleus and an equal number of electrons orbiting around it. Electrons orbit at varying distances from the nucleus of the atom. Electrons closer to the nucleus feel a much stronger attraction to the center than those in distant orbits. The outermost electrons of an atom are called the valence electrons, these require the least amount of force to be freed from an atom.

This is a copper atom diagram: 29 protons in the nucleus, surrounded by bands of circling electrons. Electrons closer to the nucleus are hard to remove while the valence (outer ring) electron requires relatively little energy to be ejected from the atom.
Using enough electrostatic force on the valence electron–either pushing it with another negative charge or attracting it with a positive charge–we can eject the electron from orbit around the atom creating a free electron.
Now consider a copper wire: matter filled with countless copper atoms. As our free electron is floating in a space between atoms, it’s pulled and prodded by surrounding charges in that space. In this chaos the free electron eventually finds a new atom to latch on to; in doing so, the negative charge of that electron ejects another valence electron from the atom. Now a new electron is drifting through free space looking to do the same thing. This chain effect can continue on and on to create a flow of electrons called electric current.

A very simplified model of charges flowing through atoms to make current.


Some elemental types of atoms are better than others at releasing their electrons. To get the best possible electron flow we want to use atoms which don’t hold very tightly to their valence electrons. An element’s conductivity measures how tightly bound an electron is to an atom.
Elements with high conductivity, which have very mobile electrons, are called conductors. These are the types of materials we want to use to make wires and other components which aid in electron flow. Metals like copper, silver, and gold are usually our top choices for good conductors.
Elements with low conductivity are called insulators. Insulators serve a very important purpose: they prevent the flow of electrons. Popular insulators include glass, rubber, plastic, and air.

Static or Current Electricity

Before we get much further, let’s discuss the two forms electricity can take: static or current. In working with electronics, current electricity will be much more common, but static electricity is important to understand as well.

Static Electricity

Static electricity exists when there is a build-up of opposite charges on objects separated by an insulator. Static (as in “at rest”) electricity exists until the two groups of opposite charges can find a path between each other to balance the system out.
When the charges do find a means of equalizing, a static discharge occurs. The attraction of the charges becomes so great that they can flow through even the best of insulators (air, glass, plastic, rubber, etc.). Static discharges can be harmful depending on what medium the charges travel through and to what surfaces the charges are transferring. Charges equalizing through an air gap can result in a visible shock as the traveling electrons collide with electrons in the air, which become excited and release energy in the form of light.

Spark gap igniters are used to create a controlled static discharge. Opposite charges build up on each of the conductors until their attraction is so great charges can flow through the air.
One of the most dramatic examples of static discharge is lightning. When a cloud system gathers enough charge relative to either another group of clouds or the earth’s ground, the charges will try to equalize. As the cloud discharges, massive quantities of positive (or sometimes negative) charges run through the air from ground to cloud causing the visible effect we’re all familiar with.
Static electricity also familiarly exists when we rub balloons on our head to make our hair stand up, or when we shuffle on the floor with fuzzy slippers and shock the family cat (accidentally, of course). In each case, friction from rubbing different types of materials transfers electrons. The object losing electrons becomes positively charged, while the object gaining electrons becomes negatively charged. The two objects become attracted to each other until they can find a way to equalize.
Working with electronics, we generally don’t have to deal with static electricity. When we do, we’re usually trying to protect our sensitive electronic components from being subjected to a static discharge. Preventative measures against static electricity include wearing ESD (electrostatic discharge) wrist straps, or adding special components in circuits to protect against very high spikes of charge.

Current Electricity

Current electricity is the form of electricity which makes all of our electronic gizmos possible. This form of electricity exists when charges are able to constantly flow. As opposed to static electricity where charges gather and remain at rest, current electricity is dynamic, charges are always on the move. We’ll be focusing on this form of electricity throughout the rest of the tutorial.


In order to flow, current electricity requires a circuit: a closed, never-ending loop of conductive material. A circuit could be as simple as a conductive wire connected end-to-end, but useful circuits usually contain a mix of wire and other components which control the flow of electricity. The only rule when it comes to making circuits is they can’t have any insulating gaps in them.
If you have a wire full of copper atoms and want to induce a flow of electrons through it, all free electrons need somewhere to flow in the same general direction. Copper is a great conductor, perfect for making charges flow. If a circuit of copper wire is broken, the charges can’t flow through the air, which will also prevent any of the charges toward the middle from going anywhere.

On the other hand, if the wire were connected end-to-end, the electrons all have a neighboring atom and can all flow in the same general direction.

We now understand how electrons can flow, but how do we get them flowing in the first place? Then, once the electrons are flowing, how do they produce the energy required to illuminate light bulbs or spin motors? For that, we need to understand electric fields.

Electric Fields

We have a handle on how electrons flow through matter to create electricity. That’s all there is to electricity. Well, almost all. Now we need a source to induce the flow of electrons. Most often that source of electron flow will come from an electric field.

What’s a Field?

field is a tool we use to model physical interactions which don’t involve any observable contact. Fields can’t be seen as they don’t have a physical appearance, but the effect they have is very real.
We’re all subconsciously familiar with one field in particular: Earth’s gravitational field, the effect of a massive body attracting other bodies. Earth’s gravitational field can be modeled with a set of vectors all pointing into the center of the planet; regardless of where you are on the surface, you’ll feel the force pushing you towards it.

The strength or intensity of fields isn’t uniform at all points in the field. The further you are from the source of the field the less effect the field has. The magnitude of Earth’s gravitational field decreases as you get further away from the center of the planet.
As we go on to explore electric fields in particular remember how Earth’s gravitational field works, both fields share many similarities. Gravitational fields exert a force on objects of mass, and electric fields exert a force on objects of charge.

Electric Fields

Electric fields (e-fields) are an important tool in understanding how electricity begins and continues to flow. Electric fields describe the pulling or pushing force in a space between charges. Compared to Earth’s gravitational field, electric fields have one major difference: while Earth’s field generally only attracts other objects of mass (since everything is sosignificantly less massive), electric fields push charges away just as often as the attract them.
The direction of electric fields is always defined as the direction a positive test charge would move if it was dropped in the field. The test charge has to be infinitely small, to keep its charge from influencing the field.
We can begin by constructing electric fields for solitary positive and negative charges. If you dropped a positive test charge near a negative charge, the test charge would be attracted towards the negative charge. So, for a single, negative charge we draw our electric field arrows pointing inward at all directions. That same test charge dropped near another positive charge would result in an outward repulsion, which means we draw arrows going out of the positive charge.

The electric fields of single charges. A negative charge has an inward electric field because it attracts positive charges. The positive charge has an outward electric field, pushing away like charges.
Groups of electric charges can be combined to make more complete electric fields.

The uniform e-field above points away from the positive charges, towards the negatives. Imagine a tiny positive test charge dropped in the e-field; it should follow the direction of the arrows. As we’ve seen, electricity usually involves the flow of electrons–negative charges–which flow against electric fields.
Electric fields provide us with the pushing force we need to induce current flow. An electric field in a circuit is like an electron pump: a large source of negative charges that can propel electrons, which will flow through the circuit towards the positive lump of charges.

Electric Potential (Energy)

When we harness electricity to power our circuits, gizmos, and gadgets, we’re really transforming energy. Electronic circuits must be able to store energy and transfer it to other forms like heat, light, or motion. The stored energy of a circuit is called electric potential energy.

Energy? Potential Energy?

To understand potential energy we need to understand energy in general. Energy is defined as the ability of an object to do work on another object, which means moving that object some distance. Energy comes in many forms, some we can see (like mechanical) and others we can’t (like chemical or electrical). Regardless of what form it’s in, energy exists in one of two states: kinetic or potential.
An object has kinetic energy when it’s in motion. The amount of kinetic energy an object has depends on its mass and speed. Potential energy, on the other hand, is a stored energy when an object is at rest. It describes how much work the object could do if set into motion. It’s an energy we can generally control. When an object is set into motion, its potential energy transforms into kinetic energy.

Let’s go back to using gravity as an example. A bowling ball sitting motionless at the top of Khalifa tower has a lot of potential (stored) energy. Once dropped, the ball–pulled by the gravitational field–accelerates towards the ground. As the ball accelerates, potential energy is converted into kinetic energy (the energy from motion). Eventually all of the ball’s energy is converted from potential to kinetic, and then passed on to whatever it hits. When the ball is on the ground, it has a very low potential energy.

Electric Potential Energy

Just like mass in a gravitational field has gravitational potential energy, charges in an electric field have an electric potential energy. A charge’s electric potential energy describes how much stored energy it has, when set into motion by an electrostatic force, that energy can become kinetic, and the charge can do work.
Like a bowling ball sitting at the top of a tower, a positive charge in close proximity to another positive charge has a high potential energy; left free to move, the charge would be repelled away from the like charge. A positive test charge placed near a negative charge would have low potential energy, analogous to the bowling ball on the ground.

To instill anything with potential energy, we have to do work by moving it over a distance. In the case of the bowling ball, the work comes from carrying it up 163 floors, against the field of gravity. Similarly, work must be done to push a positive charge against the arrows of an electric field (either towards another positive charge, or away from a negative charge). The further up the field the charge goes, the more work you have to do. Likewise, if you try to pull a negative charge away from a positive charge–against an electric field–you have to do work.
For any charge located in an electric field its electric potential energy depends on the type (positive or negative), amount of charge, and its position in the field. Electric potential energy is measured in units of joules (J).

Electric Potential

Electric potential builds upon electric potential energy to help define how much energy is stored in electric fields. It’s another concept which helps us model the behavior of electric fields. Electric potential is not the same thing as electric potential energy!
At any point in an electric field the electric potential is the amount of electric potential energy divided by the amount of charge at that point. It takes the charge quantity out of the equation and leaves us with an idea of how much potential energy specific areas of the electric field may provide. Electric potential comes in units of joules per coulomb (J/C), which we define as a volt (V).
In any electric field there are two points of electric potential that are of significant interest to us. There’s a point of high potential, where a positive charge would have the highest possible potential energy, and there’s a point of low potential, where a charge would have the lowest possible potential energy.
One of the most common terms we discuss in evaluating electricity is voltage. A voltage is the difference in potential between two points in an electric field. Voltage gives us an idea of just how much pushing force an electric field has.

With potential and potential energy under our belt we have all of the ingredients necessary to make current electricity. Let’s do it!

Electricity in Action!

After studying particle physics, field theory, and potential energy, we now know enough to make electricity flow. Let’s make a circuit!
First we will review the ingredients we need to make electricity:
  • The definition of electricity is the flow of charge. Usually our charges will be carried by free-flowing electrons.
  • Negatively-charged electrons are loosely held to atoms of conductive materials. With a little push we can free electrons from atoms and get them to flow in a generally uniform direction.
  • A closed circuit of conductive material provides a path for electrons to continuously flow.
  • The charges are propelled by an electric field. We need a source of electric potential (voltage), which pushes electrons from a point of low potential energy to higher potential energy.

A Short Circuit

Batteries are common energy sources which convert chemical energy to electrical energy. They have two terminals, which connect to the rest of the circuit. On one terminal there are an excess of negative charges, while all of the positive charges coalesce on the other. This is an electric potential difference just waiting to act!

If we connected our wire full of conductive copper atoms to the battery, that electric field will influence the negatively-charged free electrons in the copper atoms. Simultaneously pushed by the negative terminal and pulled by the positive terminal, the electrons in the copper will move from atom to atom creating the flow of charge we know as electricity.

After a second of the current flow, the electrons have actually moved very little–fractions of a centimeter. However, the energy produced by the current flow is huge, especially since there’s nothing in this circuit to slow down the flow or consume the energy. Connecting a pure conductor directly across an energy source is a bad idea. Energy moves very quickly through the system and is transformed into heat in the wire, which may quickly turn into melting wire or fire.

Illuminating a Light Bulb

Instead of wasting all that energy, not to mention destroying the battery and wire, let’s build a circuit that does something useful! Generally an electric circuit will transfer electric energy into some other form–light, heat, motion, etc. If we connect a light bulb to the battery with wires in between, we have a simple, functional circuit.

Schematic: A battery (left) connecting to a lightbulb (right), the circuit is completed when the switch (top) closes. With the circuit closed, electrons can flow, pushed from the negative terminal of the battery through the lightbulb, to the positive terminal.
While the electrons move at a snails pace, the electric field affects the entire circuit almost instantly (we’re talking speed of light fast). Electrons throughout the circuit, whether at the lowest potential, highest potential, or right next to the light bulb, are influenced by the electric field. When the switch closes and the electrons are subjected to the electric field, all electrons in the circuit start flowing at seemingly the same time. Those charges nearest the light bulb will take one step through the circuit and start transforming energy from electrical to light (or heat).

  1. What is Electronic Circuit - इलेक्ट्रॉनिक सर्किट किसे कहते है 
  2. Type of Circuit - सर्किट के टाइप 
  3. Ohms's Law -  ओह्म्स नियम 
  4. Series Circuit -सीरीज सर्किट किसे  कहते है  
  5. Parallel Circuit -पैरेलल सर्किट किसे कहते है 
  6. Crystal Oscillators - क्रिस्टल ओस्सिलाटर किसे कहते है 
  7. RF & IF Amplifers and Filters - RF (रेडिओ फ्रीक्वेंसी ) किसे कहते है 
  8. EMI & ESD Filter - EMI & ESD फ़िल्टर IC किसे कहते है 
  9. Zenor Diode -ज़ेनोर डायोड का क्या काम होता है 
  10. Fuse - फ्यूज किसे कहते है 
  11. DC to DC Converter - DC to DC कोन्वेर्टर किसे कहते है 
  12. Voltage Regulator IC  - वोल्टेज रेगुलेटर IC किसे कहते है 
  13. Mobile Phone Charger Circuit - मोबाइल फ़ोन के चार्जर की कुछ जरुरी बाते
  14. How a Mobile Power On -मोबाइल फ़ोन पॉवर ओन कैसे होता है जाने
  15. Mobile Phone Block Diagram -मोबाइल फ़ोन ब्लाक डायग्राम
  16. How do Transformers Work? Step up & Step Down

Copyright by Asia Telecom ,Created By Asia Telecom. Powered by Blogger.